Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 919: 170555, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336067

RESUMO

China is the largest industrial and pharmaceutical country in the world. The pharmaceutical industry, being a highly polluting sector, is the primary target of environmental regulation in the industry. The rapid development of pharmaceutical industry has posed a severe challenge to the environmental protection strategy of "carbon reduction and carbon neutrality" and the goal of "synergizing the reduction of pollution and carbon emissions" in China's "14th Five-Year Plan". Therefore, this paper starts from the whole industry, takes the life cycle of the whole production process of the pharmaceutical industry as the guidance, and selects a pharmaceutical company in Tianjin as the research object. Then using Life Cycle Assessment (LCA) to Characterization, Standardization, and Weighting the environmental impact of the waste gas treatment process before and after improvement based on waste gas emission characteristics from the pharmaceutical factory. LCA results show that GWP and AP are the most important environmental impact types, which account for >85 % of the total characterization value. I and II - Chemical Pharmaceutical Stage is the critical life cycle stage, accounting for over 80 % of the total characteristic values. This research proposes emission reduction countermeasures based on LCA results and simulates Emission reduction scenarios and economic evolution. If effectively implementing emission reduction countermeasures, reducing the environmental characterization value by 80 to 90 %, and generating economic benefit of 2.66 × 108 RMB/year. This research could guide improvement plans and emission reduction countermeasures of waste gas treatment in the pharmaceutical industry, which realizes collaborative management about efficient reduction of pollution and carbon and generates significant environmental, technological, economic, and social benefits.


Assuntos
Carbono , Conservação dos Recursos Naturais , Animais , China , Tecnologia , Preparações Farmacêuticas , Estágios do Ciclo de Vida , Dióxido de Carbono/análise , Desenvolvimento Econômico
2.
Chemosphere ; 352: 141481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395366

RESUMO

The production of cheap, efficient, and stable photocatalysts for degrading antibiotic contaminants remains challenging. Herein, Bi2O3/boron nitride (BN)/Co3O4 ternary composites were synthesized using the impregnation method. The morphological characteristics, structural features, and photochemical properties of the prepared photocatalysts were investigated via X-ray diffraction, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible (Vis) diffuse reflectance spectrum techniques. BN was used as a charge transfer bridge in the ternary composites, which afforded a heterojunction between the two semiconductors. The formation of the heterojunction substantially enhanced the charge separation and improved the photocatalyst performance. The degradation activity of the Bi2O3/BN/Co3O4 ternary composites against norfloxacin (NOR) under Vis light irradiation was investigated. The degradation rate of NOR using 5-wt% Bi2O3/BN/Co3O4 reached 98% in 180 min, indicating excellent photocatalytic performance. The ternary composites also exhibited high photostability with a degradation efficiency of 88.4% after five cycles. Hydroxyl radicals (•OH), superoxide radicals (•O2-), and holes (h+) played a synergistic role in the photocatalytic reaction, where h+ and •O2- were more important than •OH. Consequently, seven intermediates and major photocatalytic degradation pathways were identified. Toxicity experiments showed that the toxicity of the degradation solution to Chlorella pyrenoidosa decreased. Finally, the ecotoxicity of NOR and its intermediates were analyzed using the Toxicity Estimation Software Tool, with most intermediates exhibiting low toxicity.


Assuntos
Compostos de Boro , Chlorella , Cobalto , Norfloxacino , Óxidos , Norfloxacino/toxicidade , Catálise
3.
Chemosphere ; 340: 139881, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37611772

RESUMO

For indium recycling from LCD panels, the decomposition of 9 commonly used liquid crystal monomers (LCMs) that were in contact with sulfuric acid (i.e., leaching agent) and extraction/stripping agents, has been investigated in the present study. Also their biological toxicity changes and transfer have been studied. The results showed that 7 of the 9 LCMs were decomposed in the sulfuric acid agent, while the reaction time and temperature had no effect on the types of the decomposition products. The maximum decomposition rate was 96% when the concentration of the sulfuric acid was increased to 12 M. The time required for a 100% decomposition of the various LCMs in a 5 M sulfuric acid ranged from 41 h to 150 h. Also, Estimation Programs Interface (EPI) and ECOSAR calculations were used to compare the biotoxicity of the LCMs and the decomposition products. The results from the EPI calculations showed that the biological half-lives of the decomposition products were significantly reduced as compared with the LCMs, from the original highest value of 329.2 days-92.71 days. Furthermore, the ECOSAR calculations showed that the biological toxicity of the decomposition products for aquatic organisms was lower than for the LCMs, but they were still toxic and harmful substances. In addition, the transfer rates of the undecomposed LCMs and decomposition products in different extractants remained above 90%, and reached 100% at most. After stripping with hydrochloric acid, more than 70% of the undecomposed LCMs became enriched in the aqueous solution, while the products were enriched in the extractant.


Assuntos
Cristais Líquidos , Ácidos Sulfúricos , Simulação por Computador , Ácido Clorídrico
4.
Sci Total Environ ; 838(Pt 2): 156038, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35597354

RESUMO

The recovery and recycling of plastic products has increased dramatically in recent years as a strategy to achieve sustainable production and minimization of plastic pollution. However, the release of microplastics during plastic recycling has received little attention. We evaluated the generation and fate of microplastics in three typical facilities which make polyethylene terephthalate (PET) flakes using post-consumer PET bottles as raw material. Microplastics, 0.1- 5.0 mm in size, were detected in production wastewater at concentrations ranging from 23.43 ± 1.04 mg/L to 1836.37 ± 31.73 mg/L, while decreased to (8.13 ± 0.42-83.83 ± 0.93) mg/L in discharge effluent and (52,166 ± 2858-68,866 ± 2500) µg/g in sludge. Interestingly, the profiles of microplastics in samples from production wastewater, effluents, and sludge showed significant differences. Although, in all three compartments, the mass of microplastics increased, and the particle number decreased with increasing particle size. Overall, the removal ratio of total microplastics from the production wastewater was 53.47 ± 4.48% to 99.56 ± 0.02% in mass, and from 90.08 ± 0.82% to 99.56 ± 0.05% in quantity. The loss of microplastics from wastewater resulted in their concentration in sludge. Factors that influence the transfer of microplastics from wastewater to sludge should be identified and utilized to maintain a high level of removal and prevent leakage of these particles into the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Plásticos , Polietilenotereftalatos , Esgotos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...